show more


from keras.applications.mobilenet import MobileNet
MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000)

MobileNet model, with weights pre-trained on ImageNet.

Note that this model only supports the data format 'channels_last' (height, width, channels).

The default input size for this model is 224x224.


  • input_shape: optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224)(with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
  • alpha: controls the width of the network.
    • If alpha < 1.0, proportionally decreases the number of filters in each layer.
    • If alpha > 1.0, proportionally increases the number of filters in each layer.
    • If alpha = 1, default number of filters from the paper are used at each layer.
  • depth_multiplier: depth multiplier for depthwise convolution (also called the resolution multiplier)
  • dropout: dropout rate
  • include_top: whether to include the fully-connected layer at the top of the network.
  • weights: None (random initialization) or 'imagenet' (ImageNet weights)
  • input_tensor: optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
  • pooling: Optional pooling mode for feature extraction when include_top is False.
    • None means that the output of the model will be the 4D tensor output of the last convolutional layer.
    • 'avg' means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor.
    • 'max' means that global max pooling will be applied.
  • classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified.


A Keras Model instance.



How helpful was this page?